Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Biosci (Landmark Ed) ; 27(2): 48, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1772157

ABSTRACT

BACKGROUND: Thymosin-α1 has been implicated into the treatment of novel respiratory virus Coronavirus Disease 2019 (COVID-19), but the underlying mechanisms are still disputable. AIM: Herein we aimed to reveal a previously unrecognized mechanism that thymosin-α1 prevents COVID-19 by binding with angiotensin-converting enzyme (ACE), which was inspired from the tool of network pharmacology. METHODS: KEGG pathway enrichment of thymosin-α1 treating COVID-19 was analyzed by Database of Functional Annotation Bioinformatics Microarray Analysis, then core targets were validated by ligand binding kinetics assay and fluorometric detection of ACE and ACE2 enzymatic activity. The production of angiotensin I, angiotensin II, angiotensin (1-7) and angiotensin (1-9) were detected by enzyme linked immunosorbent assay. RESULTS: We found that thymosin-α1 impaired the expressions of angiotensin-converting enzyme 2 and angiotensin (1-7) of human lung epithelial cells in a dose-dependent way (p < 0.001). In contrast, thymosin-α1 had no impact on their ACE and angiotensin (1-9) expressions but significantly inhibited the enzymatic activity of ACE (p > 0.05). CONCLUSION: The bioinformatic findings of network pharmacology and the corresponding pharmacological validations have revealed that thymosin-α1 treatment could decrease ACE2 expression in human lung epithelial cells, which strengthens the potential clinical applications of thymosin-α1 to prevent severe acute respiratory syndrome coronavirus 2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 Drug Treatment , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Humans , SARS-CoV-2 , Thymalfasin/pharmacology
2.
Molecules ; 26(1)2020 Dec 31.
Article in English | MEDLINE | ID: covidwho-1006941

ABSTRACT

December 2019 saw the emergence of the coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which has spread across the globe. The high infectivity and ongoing mortality of SARS-CoV-2 emphasize the demand of drug discovery. Angiotensin-converting enzyme II (ACE2) is the functional receptor for SARS-CoV-2 entry into host cells. ACE2 exists as a membrane-bound protein on major viral target pulmonary epithelial cells, and its peptidase domain (PD) interacts SARS-CoV-2 spike protein with higher affinity. Therefore, targeting ACE2 is an important pharmacological intervention for a SARS-CoV-2 infection. In this review, we described the two-way switch role of ACE2 in the treatment of novel coronavirus pneumonia and underlying comorbidities, and discussed the potential effect of the ACE inhibitor and angiotensin receptor blocker on a hypertension patient with the SARS-CoV-2 infection. In addition, we analyzed the S-protein-binding site on ACE2 and suggested that blocking hot spot-31 and hot spot-353 on ACE2 could be a therapeutic strategy for preventing the spread of SARS-CoV-2. Besides, the recombinant ACE2 protein could be another potential treatment option for SARS-CoV-2 induced acute severe lung failure. This review could provide beneficial information for the development of anti-SARS-CoV-2 agents via targeting ACE2 and the clinical usage of renin-angiotensin system (RAS) drugs for novel coronavirus pneumonia treatment.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Pneumonia/drug therapy , Pneumonia/metabolism , SARS-CoV-2/drug effects , Animals , COVID-19/metabolism , COVID-19/virology , Humans , Pneumonia/virology
SELECTION OF CITATIONS
SEARCH DETAIL